A Ridge - Parameter Approach to Deconvolution
نویسنده
چکیده
Kernel methods for deconvolution have attractive features, and prevail in the literature. However, they have disadvantages, which include the fact that they are usually suitable only for cases where the error distribution is infinitely supported and its characteristic function does not ever vanish. Even in these settings, optimal convergence rates are achieved by kernel estimators only when the kernel is chosen to adapt to the unknown smoothness of the target distribution. In this paper we suggest alternative ridge methods, not involving kernels in any way. We show that ridge methods (a) do not require the assumption that the error-distribution characteristic function is non-vanishing; (b) adapt themselves remarkably well to the smoothness of the target density, with the result that the degree of smoothness does not need to be directly estimated; and (c) give optimal convergence rates in a broad range of settings.
منابع مشابه
A Ridge-parameter Approach to Deconvolution by Peter Hall
Kernel methods for deconvolution have attractive features, and prevail in the literature. However, they have disadvantages, which include the fact that they are usually suitable only for cases where the error distribution is infinitely supported and its characteristic function does not ever vanish. Even in these settings, optimal convergence rates are achieved by kernel estimators only when the...
متن کاملPSO-Optimized Blind Image Deconvolution for Improved Detectability in Poor Visual Conditions
Abstract: Image restoration is a critical step in many vision applications. Due to the poor quality of Passive Millimeter Wave (PMMW) images, especially in marine and underwater environment, developing strong algorithms for the restoration of these images is of primary importance. In addition, little information about image degradation process, which is referred to as Point Spread Function (PSF...
متن کاملGeneralized Ridge Regression Estimator in Semiparametric Regression Models
In the context of ridge regression, the estimation of ridge (shrinkage) parameter plays an important role in analyzing data. Many efforts have been put to develop skills and methods of computing shrinkage estimators for different full-parametric ridge regression approaches, using eigenvalues. However, the estimation of shrinkage parameter is neglected for semiparametric regression models. The m...
متن کاملAn Adaptive Parameter Estimation for Guided Filter based Image Deconvolution
Image deconvolution is still to be a challenging illposed problem for recovering a clear image from a given blurry image, when the point spread function is known. Although competitive deconvolution methods are numerically impressive and approach theoretical limits, they are becoming more complex, making analysis, and implementation difficult. Furthermore, accurate estimation of the regularizati...
متن کاملAn Application of Bayesian Inverse Methods to Vertical Deconvolution of Hydraulic Conductivity in a Heterogeneous Aquifer at Oak Ridge National Laboratory1
A Bayesian inverse method is applied to two electromagnetic flowmeter tests conducted in fractured weathered shale at Oak Ridge National Laboratory. Traditional deconvolution of flowmeter tests is also performed using a deterministic first-difference approach; furthermore, ordinary kriging was applied on the first-difference results to provide an additional method yielding the best estimate and...
متن کامل